Maximum Lq-likelihood estimation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Lq-Likelihood Estimation via the Expectation Maximization Algorithm: A Robust Estimation of Mixture Models

We introduce a maximum Lq-likelihood estimation (MLqE) of mixture models using our proposed expectation maximization (EM) algorithm, namely the EM algorithm with Lq-likelihood (EM-Lq). Properties of the MLqE obtained from the proposed EMLq are studied through simulated mixture model data. Compared with the maximum likelihood estimation (MLE) which is obtained from the EM algorithm, the MLqE pro...

متن کامل

Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model

Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...

متن کامل

Maximum Likelihood Estimation ∗ Clayton

This module introduces the maximum likelihood estimator. We show how the MLE implements the likelihood principle. Methods for computing th MLE are covered. Properties of the MLE are discussed including asymptotic e ciency and invariance under reparameterization. The maximum likelihood estimator (MLE) is an alternative to the minimum variance unbiased estimator (MVUE). For many estimation proble...

متن کامل

Maximum Likelihood Parameter Estimation

The problem of estimating the parameters for continuous-time partially observed systems is discussed. New exact lters for obtaining Maximum Likelihood (ML) parameter estimates via the Expectation Maximization algorithm are derived. The methodology exploits relations between incomplete and complete data likelihood and gradient of likelihood functions, which are derived using Girsanov's measure t...

متن کامل

Maximum Likelihood Estimation ∗

This module introduces the maximum likelihood estimator. We show how the MLE implements the likelihood principle. Methods for computing th MLE are covered. Properties of the MLE are discussed including asymptotic e ciency and invariance under reparameterization. The maximum likelihood estimator (MLE) is an alternative to the minimum variance unbiased estimator (MVUE). For many estimation proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2010

ISSN: 0090-5364

DOI: 10.1214/09-aos687